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Abstract . __ 

There has been considerable progress recently in the development and use of elementary 
chemical-reaction mechanisms to describe the gas-phase energy release of energetic materials. 
Such advances present an opportunity to examine the extent to which these models might be used 
to provide guidance to the propellant formulator. In this report, we develop two methodologies 
that may prove helpful to the development of propellant formulations with tailored combustion 
characteristics. First, the dependence of the burning rate on the path of condensed-phase 
decomposition was computed for nitroglycerine (NG) combustion. It was found that some sets 
of decomposition products lead to nearly an order of magnitude higher burning rate than is 
observed experimentally. This indicates that efforts to influence the path of decomposition 
might be a novel and powerful approach to tailoring burning rate. Second, a methodology for 
calculating the effectiveness of different chemical additives on the burning rate was developed 
and demonstrated for several chemical additives added to NG. Burning rates were calculated for 
the additives H2, CH20, and NH3 and flame-structure calculations made for HNCO as an 
additive. NH3 accelerates the burning rate of NG, and HNCO is expected to retard it; both 
reduce the dark-zone length and thus may reduce ignition delays in guns. 
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1. Introduction 

The application of complex networks of elementary chemical reactions to the gas phase of 

burning energetic materials has increased markedly over the last decade [1-6]. The direction of 

this work raises the possibility that such chemically specific descriptions might help propellant 

formulators rationalize their work in a way that has long been hoped for. This report 

demonstrates two specific approaches that might prove useful in guiding propellant-formulation 

activities. The first approach involves determining how alternative condensed-phase 

decomposition paths might influence the burning rate by providing different sets of 

decomposition products that subsequently become the reactants for the gas phase. The second 

approach establishes a systematic method for testing the effect of specific chemical additives on 

the burning rate of an energetic material. This method permits the evaluation of the relative 

effectiveness of different additives in boosting or retarding the burning rate of an energetic 

material by computing the amount of each additive necessary to bring the mixture to the same 

oxygen balance. We believe that these calculations are the first of their kind. 

2. Burning-Rate Model 

For purposes of this study, we have developed a new burning-rate model that is applied to the 

steady-state combustion of nitroglycerine (NG) as a function of pressure. This model is 

predicated on the use of the following Arrhenius-like expression relating the mass burning rate to 

the surface temperature; this relationship is known as the "pyrolysis law" in the propellant- 

combustion literature [7]: 

rh = Ase-E</R\ (1) 

where Es is the activation energy, R is the universal gas constant, and Ts is the surface 

temperature. Here, the pyrolysis law is written in terms of the mass burning rate or mass flux 

m; it could as well be expressed in terms of the linear burning rate r = rh/ p, where p is the mass 

density of the unreacted solid.   This expression provides the rate at which condensed-phase 



molecules are converted to the gas phase. One also needs to know the chemical identities and 

mole fractions of these first gas-phase molecules. This information is embodied in an assumed 

overall chemical reaction to be discussed subsequently. 

With the identity of the nascent gas-phase reactants established by the overall reaction and at 

a rate of appearance at the surface given by the pyrolysis law, the heat feedback to the surface 

can be computed using a gas-phase elementary-reaction mechanism. For this purpose, we have 

adapted the PREMDC code, version 2.55, developed by Kee et al. [8]. The burning rate is then 

found by an iterative method to satisfy the energy-flux boundary condition at the burning 

surface. This boundary condition is (assuming no condensed-phase molecular diffusion) 

'dTV0 

dx 
-IrhYr0h: °=X dT 

dx 

Y° 
+0\T+0U+0 -ImY/V+lP.YrVh? (2) 

In this equation, Xc is the condensed-phase thermal conductivity, Yf ° is the mass fraction of 

species i on the liquid side of the surface, and h'° is the ith species enthalpy on the liquid side of 

the surface. The right side of the equation contains the analogous quantities for the positive side 

of the surface (i.e., in the gas phase), with the addition of the diffusion velocity at the surface, 

Vi+0, and the gas-phase mass density pg. By further assuming there are no bulk-liquid reactions, 

one can combine the species boundary conditions with an integral over the energy conservation 

equation in the condensed phase over the interval (-», -0) to obtain the following form of the 

energy boundary condition at the interface between the gas and condensed phases: 

fdTY0 

dx 
= riiE(Yr°h^-Yi-"hD. (3) 

Here, -°° denotes the unreacted material at its initial temperature. This form of the boundary 

condition is very useful because one need not know the thermophysical properties of the 

condensed phase at any temperature other than the initial temperature, at least for purposes of 

finding the burning-rate eigenvalue. Of course, if the temperature profile in the condensed phase 



is desired, one must know these properties at all temperatures between the initial temperature and 

the surface temperature. 

The concepts under discussion in this paper are illustrated using NG as the subject energetic 

material. For this case we use the pyrolysis law developed by Zenin [9] from his 

microthermocouple measurements of the surface temperature of double-base propellants 

(As= 1.8 x 103g/cm2-s, ES = 5,000-R). Double-base propellants contain various proportions of 

nitrocellulose (NC) and NG, and, though the validity of the double-base pyrolysis law for pure 

NG is unproved, it is not unreasonable to suppose that the limiting step in the decomposition of 

NG, like that of NC, is the scission of an N02 group and would therefore have at least a similar 

activation energy as in the NC case. This may in fact account for the apparent universality of 

Zenin's pyrolysis law for different ingredient proportions. In Figure 1, the good quality of fit of 

this pyrolysis law to the data is evident. 
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Figure 1. Universal Pyrolysis Law for Double-Base Propellants Developed by Zenin [9]. 

Finally, one needs to have an elementary reaction mechanism suitable for the gas-phase 

chemistry of NG. Our starting point here was the mechanism [10] previously developed for the 

dark zones of both double-base and nitramine propellants. To this mechanism, CH2O and its 

associated reactions were added and HCN and its associated reactions were removed. This 

mechanism, referred to here as DB2, consists of 35 species and 177 reactions. For the purpose of 



faster calculations, an abbreviated version, labeled DBQ1, consisting of only 19 species and 40 

reactions was assembled based on experience and intuition only and not a systematic reduction 

method. A more systematic reduction was planned if later found to be warranted. These 

reaction mechanisms are given in the Appendix. 

3. Effect of Condensed-Phase Decomposition Path 
on Burning Rate 

The condensed-phase decomposition of an energetic material would, in general, be expected 

to be a complex chemical event, possibly involving competing parallel and sequential kinetic 

paths. Owing to the difficulty of measuring these events in the condensed phase, they are not 

known with reliability for any energetic material. In the face of this intractability, we have 

decided to turn the issue around and ask not what species actually result from the condensed- 

phase decomposition of NG, but what the effect on burning rate would be if one could influence 

the decomposition to occur along alternative overall-reaction paths. This approach, in fact, may 

be more pertinent to the issue of tailoring the burning rate to specific desired behavior; although, 

of course, it begs the question of how to accomplish this feat of chemical persuasion. 

There have been previous attempts at discerning the overall condensed-phase decomposition 

path of NG. Hatch [1] chose a path for his model of NG combustion, though without 

rationalization. Levy [11] speculated on a sequence of reactions leading to an overall path 

(Figure 2). We have added a number of balanced-chemical-reaction alternatives for purposes of 

this study, labeled MSM1, etc. All of these possible overall reactions are collected in Table 1. 

No claim is made that this list is exhaustive. 

The results of burning-rate calculations using the different sets of decomposition products in 

Table 1 and the DBQ1 reaction mechanism are shown in Figure 3. It is seen that the Levy 

decomposition products give excellent agreement with the experimental data over almost 

4 orders of magnitude in pressure. It should be mentioned here that subsequent calculations with 

the more complete reaction mechanism DB2 showed that the DBQ1-calculated burning rates 

were about a factor of 2 too high; thus, the MSM4 decomposition set gives the best 
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Figure 2. Levy's Rationalization for NG Decomposition Scheme. 

Table 1. Hypothetical Condensed-Phase Decomposition Pathways for NG 

Name Overall Reaction 

Levy [11] NG (C3H5N309) -» 2 N02 + HONO + 2 CH20 + CO 
Hatch [1] NG (C3H5N3O9) -* 3 N02 + 2 CH20 + HCO 

MSM1 NG (C3H5N3O9) -► 2 N02 + HONO + CH20 + 2 HCO 
MSM2 NG (C3H5N3O9) -► 2 N02 + HONO + CH20 + H2 + 2 CO 
MSM3 NG (C3H5N309) -► N02 + 2 HONO + 3 HCO 

MSM4 NG (C3H5N309) -> 3 HONO + 2 HCO + CO 
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Figure 3.  Calculated Burning Rates Based on the Assumption of Alternative 
Condensed-Phase Decomposition Paths. 



agreement with experiment using the more complete mechanism. The interesting thing about the 

results in Figure 3 is that the burning rate of NG varies about an order of magnitude among the 

different sets of decomposition products. This implies that enormous control over burning rate 

might be obtainable if the course of decomposition can be intentionally altered. 

An obvious question to ask concerning these results is whether those decomposition sets 

leading to the faster burning rates do so because of higher implied condensed-phase heat release. 

Table 2 compares the computed burning rates and heat feedback to the enthalpies of reaction 

from NG at 298 K to the gas-phase products at the surface temperature. It is clear that there is, in 

fact, no correlation between this heat of reaction and the burning rate. Moreover, all of the heats 

of reaction are endothermic. On the other hand, the heat feedback does correlate perfectly with 

the burning rate, suggesting that the relative gas-phase reactivity of the product molecules 

outweighs their condensed-phase endothermicity. 

Table 2. Heats of Reaction for Condensed-Phase Decomposition Sets 

Product Set Burning Rate 
(cm/s) 

Heat Feedback 
(kcal/cm2-s) 

C-Phase Heat of Rxn AH 
(cal/g) 

Levy [11] 0.89 0.18 21 

MSM4 1.51 0.62 12 

Hatch [1] 3.50 2.55 30 

MSM3 4.14 3.81 40 

MSM1 4.80 4.05 35 

4. Effects of Chemical Additives 

It has always been hoped that theoretical modeling might some day contribute to the problem 

of the effects of chemical additives on the burning rate of propellants. However, only with the 

relatively recent advent of chemically specific modeling with elementary reactions was there any 

real prospect for realizing these hopes. It is the intention of this section to demonstrate that such 

theoretical guidance to the formulator is becoming feasible. 



A systematic approach is needed to compare the effects of one additive to another in a 

quantitative sense. One propellant-formulation strategy is to add enough additive to bring the 

mixture to a zero oxygen balance. This approach affords a rational method of determining the 

amount of each additive appropriate for comparison purposes. The oxygen balance is defined as 

that amount of oxygen one must add or subtract to have all oxygen appear in either H20 or C02. 

NG has a positive oxygen balance of 3.5% (i.e., it has an oxygen surplus). Thus, we compute 

that one must add one third of a mole of NH3 to neutralize each mole of NG. For comparison, 

we examined several other additives. We are, of course, limited here to those fuel molecules that 

are already in our reaction mechanism. 

As a first demonstration of the effects of additives on propellant flames, we took the 

converged values of burning rate and surface temperature (Ts = 637.1 K, m = 0.7029 g/cm -s) 

obtained in a calculation of pure NG at 10 atm using Levy's decomposition-product set and the 

DB2 reaction mechanism as our starting conditions for a steady premixed flame. A number of 

candidate additives, including NH3, HNCO, H2, and CH20, were then added to the Levy 

decomposition set in amounts computed to achieve neutral oxygen balance. The flame structure 

was then computed for the fixed surface temperature and mass flux just given using the PREMTX 

[8] code. These results are compared to the pure-NG case and the case of a 5% diluent of N2 and 

shown in Figure 4. There, one can see that the secondary gas flame for the pure-NG case stands 

off from the surface by a little over a centimeter. Such distances are typical of the dark-zone 

length of double-base propellants, which contain NG as a major ingredient. Note that, when the 

NH3 is added, the dark-zone length collapses by about a factor of 2. Also, the heat feedback 

increases by 12%. Normally, when the heat feedback increases, one can expect the burning rate 

to increase as well. The effect NH3 has on the dark-zone length may explain why M30 burns 

with no apparent dark zone, unlike any other gun propellant. A major ingredient (about 48% by 

weight) in M30 is nitroguanidine (NQ), which is known [12] to supply copious amounts of NH3 

upon decomposition. The case with 10% N2 added has the expected diluent effect, lowering the 

heat feedback by 11% but having relatively little effect on the dark-zone length. Note that the 

addition of HNCO both decreases the dark-zone length, even more than NH3 and results in a 

lower heat feedback than the N2 diluent, indicating a chemical-inhibition effect on the primary 

flame while, curiously, speeding up the secondary flame.   Like NH3, HNCO may also be a 
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practical indirect additive since it has been observed [13] to be a major decomposition product of 

certain AP-propellant ingredients. It should be commented here that decreasing the dark-zone 

length is thought to be desirable from an interior-ballistic viewpoint, as a shorter dark zone 

implies faster secondary-flame reactions and, therefore, less ignition delay in a gun. Also note 

that the addition of sufficient H2 and CHaO to lead to a stoichiometric mixture is expected to 

yield a higher adiabatic flame temperature than the slightly oxygen-rich pure-NG case. One 

might therefore expect these additives (at the levels used) to yield a significant increase in heat 

feedback and burning rate. However, these yield much smaller effects than similar additions of 

NH3 and HNCO (see legend, Figure 4). CH20, in fact, slightly increases the dark-zone length 

(see Figure 4). The results suggest that near-surface chemical-kinetic effects, which are 

discussed later, play a role as important as the net overall heat release. Of course, to be certain of 

the effect of a given additive on the burning rate, the more complex burning-rate problem must 

be solved. This was done for a few of these additives, as discussed in the next paragraphs. 

To compute the quantitative effect of additives on the burning rate, additional assumptions 

are required, having to do with the effects of condensed-phase mixtures of ingredients. The mass 

density of the mixture is computed by the method of additive partial molar volumes, that is, 

Pffiix=Wavg/EXiVi, (4) 
i 

where Wavg is the average molecular weight, Xi is the mole fraction of ingredient i, and Vi is the 

molar volume of ingredient i. The mixture mass density is important in calculating the linear 

burning rate from the mass burning rate. Secondly, we assume that the starting mixture enthalpy 

is given by the weighted sum of the ingredient enthalpies. This is a reasonable approximation to 

make, but it ignores any enthalpy of mixing or solution contributions; there is also some 

ambiguity as to what phase is best to use for the additive enthalpy. Finally, we must, of course, 

assume that the pyrolysis law is unchanged as a result of these additives. This assumption is 

reasonable in view of the small amount of each additive. 

The results of the burning-rate-with-additive computations are given for the additives NH3, 

CH20, and H2 in Table 3. The enthalpies of all the additives in Table 3 at 298 K are taken as that 

10 



Table 3. Effect of Different Chemical Additives on the Burning Rate of NG at 10 atm 

Additive Weight-Percent 
Linear Burning 

Rate 
(% increase) 

Mass Burning 
Rate 

(% increase) 

Heat 
Feedback 

(% increase) 

NH3 2.4 23 19 25 

CH20 2.2 -2 -4 -5 

H2 0.44 1 -8 -5 

for the gas phase. It should be noted that this assumption could have important consequences for 

the computed burning rate. For example, if the enthalpy for NH3 liquid at 298 K is used, the 

linear burning rate increases by only 12%. This smaller increase reflects the additional energy 

requirement of the heat of vaporization. Clearly, the calculation of the unreacted-mixture 

enthalpy is one that may need more sophisticated theoretical guidance. The burning rate with 

HNCO as additive has not yet been calculated. However, results for the premixed flame 

structure with this additive, especially the reduction in heat feedback predicted at the surface, 

suggest that it will reduce burning rate (see legend, Figure 4). 

Detailed chemical analysis (i.e., investigation of the chemical rates and kinetic sensitivities 

for the solutions obtained) was performed on the structure of the flames with NH3 and HNCO 

additives in an attempt to understand their predicted strong effects. The analysis yielded likely 

kinetic explanations for the results. First, it must be noted in all cases that the [H]/[OH] ratio is 

typically much less than 1.0 near the surface. This result is contrary to the usual situation for 

near stoichiometric flames where [H] is typically greater than [OH] in the flame zone. [O] is 

much less than either, as usual for such flames. The small ratio is the result of large quantities of 

N02 near the surface (assumed to be a major component of the intermediate species emanating 

from the condensed phases for all decomposition pathways used [see Table 1]; the presence of 

large quantities of N02 in the near surface region for nitrate ester and nitramine propellants is 

undoubtedly correct). The reaction of N02 with H atoms, 

[I] H + N02->OH + NO, 

11 



has one of the largest rate constants known and is the driving force causing the unusually small 

[H]/[OH] ratio near the surface of even oxygen-lean propellant flames. The ratio typically 

reverts to [H]/[OH] greater than 1.0 when the N02 is consumed. Due to the high reactivity of 

N02, its consumption is typically complete very close to the surface; in the present examples, 

this occurs within the first 50 to 100 urn. 

In the case of NH3, since [OH] is large near the surface, the reaction 

[II] NH3 + OH -+ NH2 + H20 

dominates conversion to NH2. Even near the surface, there is a considerable amount of NO due 

to reaction [I]. The rate constant for NH2 to react with NO is also very large, causing the 

reactions 

[IEa] NH2 + NO -► N2 + H + OH 

and 

[mb] NH2 + NO -♦ N2 + H20 

to become important. (In our more recent mechanisms, the products of reaction [ma] are 

changed to NNH+OH, which we believe to be the more likely actual products of the reaction. 

The results are not affected, however, because NNH under these conditions is rapidly, almost 

completely converted to N2+H.) Thus, the aforementioned sequence leads to final products and 

increased heat release due to conversion of some of the NO to N2 near the surface. Without the 

additive, little NO is consumed until convection away from the surface at the end of the dark 

zone. Additionally, reaction [IEa] is chain branching (i.e., it causes an increase in the growth of 

reactive radicals, which may play an important role). The increased heat feedback is thus likely 

the combined result of heat released by NO to N2 conversion and the larger radical growth rate, 

both occurring near the surface. Note that, besides increasing heat feedback, NH3 causes a 

reduction in the dark zone length (temperature plateau region between about 0.02 and 0.8 cm in 

12 



Figure 4, due to slow reaction of NO intermediate). Plots of the NH3 concentration (not shown) 

indicate a significant fraction of the NH3 survives into the dark zone. It seems likely that 

reactions [IE] and [HI] initiated by this NH3 account for the reduction in length of the dark zone, 

as compared to the pure-NG case, with an additional important contribution from 

[IV] H -► NH2 + H2, 

which matters due to the increased [H]/[OH] ratio in the dark zone. 

For HNCO as additive, the situation is more complex. Note the curious result, mentioned 

previously, that the predicted heat feedback is reduced, which one would think indicative of an 

overall reduced chemical rate near the surface; yet, the predicted dark-zone length is also 

reduced, which is indicative of a faster overall rate in that region. Near the surface, reaction [I] 

is very important, similar to all the other neat NG and additive cases. The HNCO thus mainly 

undergoes reaction with OH, 

[Va] OH + HNCO -► H20 + NCO, 

rather than 

[VI] H + HNCO -> NH2 + CO, 

which is more usual for stoichiometric flames. There are, however, important secondary 

contributions from reaction [ VTj and from another channel of OH+HNCO 

[Vb] OH + HNCO->NH2 + C02. 

One would expect the sequence of reaction [Vb] or [VTJ followed by reaction [IE] to produce an 

increased heat release, as one might expect for the more usual stoichiometric conditions where 

[H] > [OH]. However, here, the heat feedback is predicted to be reduced. This is at least in part 

due to the fact that the rate of reaction [Va] is faster than reaction [Vb] + reaction [VTJ, leading to 

13 



a higher rate of production of NCO than NH2. The reduced heat feedback is thus likely the result 

of a reduction in radical growth rates due to the radical termination reactions, 

[Vila] NCO + NO -* N20 + CO, 

[Vllb] NCO + NO -> N2 + C02, 

and 

[VIE] NCO + N02 -* N20 + co2, 

which the detailed analysis shows are predicted to occur rapidly near the surface; their combined 

rate is much more rapid than reaction [ma]. These reactions convert a highly reactive radical, 

NCO, to more stable intermediate species or products. Finally, note in Figure 4 that there is a 

bulge in the temperature profile at about 0.1 cm, indicating that important heat release is 

occurring there, which likely results in the reduction of dark-zone length. Like the case with 

NH3, it appears the reduction in dark-zone length is due to the survival of a significant fraction of 

the HNCO additive into the dark-zone plateau region (in this case, between 0.02 and 0.3 cm in 

Figure 4). In this region, the [H]/[OH] ratio becomes larger than 1.0 so that reaction [VI] 

dominates HNCO consumption. The NH2 produced undergoes reaction [IE] with NO, increasing 

the global kinetic rate. There may also be a significant contribution increasing the rate by the 

N20 produced in reactions [Vila] and [VET]. N20 reacts moderately rapidly at the higher 

temperatures in the dark zone via 

[Vm] N20 + H -> N2 + OH 

and 

[IX] N20 + M -* N2 + O + M. 

14 



Reaction [VHI] increases heat release rate, while reaction [DC] is a chain initiation step (i.e., 

produces a radical). It seems likely the reaction of the residual HNCO and N2O leads to the 

pronounced bulge in the temperature profile for HNCO at about 0.1 cm (see Figure 4). Profiles 

of HNCO and N20 (not shown) indicate that both undergo final consumption rapidly at the 

leading edge of this bulge (about 0.04 cm). 

It has long been of interest to find additives that one could use to adjust burning rates of 

propellants in either direction, hopefully without degradation in other properties. This work has 

shown that small additions of two simple molecules, NH3 and HNCO, could increase or 

decrease, respectively, the burning rate. Also, both species would have the desirable feature of 

reducing or eliminating the dark zone. It is thought that undesirably long ignition delays in 

large-caliber guns using nitramine propellants are due to the relatively slow reactions of 

dark-zone species to produce the energy release associated with the visible flame [14]. Since 

small amounts of these additives are effective, one might expect that other properties would not 

be strongly affected. Of course, NH3 and HNCO are not practical as direct additives. However, 

there are a number of species that are known to produce these molecules upon pyrolysis and that 

might be practical; indeed, some of these are now used in propellant formulations (see section 5). 

Urea, for instance, is known to produce HNCO upon decomposition. We hope to model effects 

of some of these more complex NH3 and HNCO precursors in the near future. The 

semiempirical propellant combustion model developed herein is particularly well suited for such 

an endeavor because of the availability of the simplifying assumption that NH3 or HNCO, as 

well as other species, is produced at the surface. This assumption avoids the difficult issue of 

kinetics of the complex additives. In the next section, speculations on the effects of one NH3 

precursor as an additive are discussed. 

5. Speculations on Practical Burning-Rate Modifiers 

The mechanism of the aforementioned NH3 action invites a further discussion of the M30 

case. With NH3-modified NG, we found both a collapse of the dark zone and a significant boost 

in the burning rate. As mentioned previously, NQ, a major ingredient of M30, produces 

substantial amounts of NH3 upon decomposition.    M30 has no dark zone, consistent with our 

15 



NH3-modified NG case, but it bums no faster than a single-base propellant (MIO, 98% NC) and 

slower than a double-base propellant, a fact that appears to be inconsistent with our model 

calculation. This apparent inconsistency might be explained as follows. M30 has a nominal 

composition of 28% NC, 22.5% NG, and 47.7% NQ. It is likely that the large percentage of NQ 

is responsible for the lack of burning-rate enhancement since it acts to lower the flame 

temperature of the propellant. Hence, the cooling effect might outweigh the rate-acceleration 

effect for such major proportions of NQ. We would expect that, if a small amount of NQ (say, 

2-5%) were added to either a single- or double-base propellant, the burning rate would be 

increased and the dark zone diminished. Of course, some of the benefit of the NH2 from NQ 

could be diluted by the energy required to break down its parent molecule or to get it into the gas 

phase, as could be seen in our model calculation's sensitivity to the assumed NH3 starting 

enthalpy. Nonetheless, here is a concrete, theoretically inspired idea that could be easily tested. 

Thus, though the model needs to be further refined and expanded, it can already provide insights 

of potential worth to the propellant formulator. 

6. Conclusions 

It has long been a dream that one might use combustion models for guidance in formulating 

propellants. The calculations presented here indicate that that dream is becoming reality. 

Though the unrestricted capability of testing any additive is not yet at hand, suggestive guidance 

on the effects of some additives is now feasible. In addition, we have shown how our ignorance 

as to the exact chemical course of decomposition in the condensed phase may be used to 

advantage by calculating the burning-rate dependence on the decomposition path. Those 

calculations show that one could potentially increase the burning rate of NG by almost an order 

of magnitude. These studies suggest that the propellant-formulator's art and combustion science 

are rapidly converging toward a productive synergism. 
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Appendix: 

Gas-Phase Reaction Mechanism 
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Units for the rate parameters are centimeters, seconds, and moles, and, for E, cal/mole. For 

reactions followed by three numerical parameters, the rate-coefficient expression is k = 

ATbexp(-E/RT). For reactions that appear twice with the phrase "Declared duplicate 

reaction...," the rate coefficient is computed as the sum of the two three-parameter expressions. 

For reactions involving a generalized collider species, M, collider efficiencies different than 1.0 

are specified. For reactions involving pressure-dependent rate expressions, that is, those with a 

collider species specified as (+M), three types of expression are used. If "T&H VALUE" occurs 

in the output, the Tsang and Herron form was used, as described in Tsang and Herron1 (note that 

the log expressions used in this source are for base 10)2 with constants ao and ai (if the latter is 

used) appearing, respectively, on the same line. A version of CHEMKIN modified at the U.S. 

Army Research Laboratory (ARL) was used to allow this computation. If "TROE centering" 

occurs, the TROE form was used with appropriate parameters specified on that line. If neither of 

these is mentioned, the Lindemann form was assumed. Descriptions of the TROE and 

Lindemann expressions may be found in the CHEMKIN manual.3 

1 Tsang, W., and J. T. Herron. "Chemical Kinetic Data Base for Propellant Combustion. I. Reactions Involving 
NO, N02, HNO, HN02, HCN, and N20." Journal of Physical Chemistry, vol. 20, pp. 609-663,1991. 

2 Tsang, W. Private communication. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1992. 
3 Kee, R. J., F. M. Rupley, and J. A. Miller. "Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis 

of Gas-Phase Chemical Kinetics."   SAND89-8009, Sandia National Laboratories, Livermore, CA, September 
1989. 
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(k = A T**b exp(-E/RT)) 

REACTIONS  CONSIDERED 

N02 ( +M) =N0+0 ( +M) 

Low pressure limit:     0.24700E+29 

T&H VALUES     0.95000E+00   -0.10000E 

N20 

H20 

N2 

C02 

2. N20(+M)=N2+0(+M) 

Low pressure limit: 

N20 

H20 

N2 

C02 

02 

3. H+N0(+M)=HN0(+M) 

Low pressure limit: 

T&H VALUE     0.82000E+00 

N20 Enhanced by 

H20 Enhanced by 

N2 Enhanced by 

C02 Enhanced by 

4. N0+0H(+M)=H0N0(+M) 

Low pressure limit:     0.50800E+24 

T&H VALUE     0.62000E+00 

Enhanced by 

Enhanced by 

Enhanced by 

Enhanced by 

0.59700E+15 

Enhanced by 

Enhanced by 

Enhanced by 

Enhanced by 

Enhanced by 

0.89600E+20 

A b E 

7.600E+18       -1.27 73290.0 

-0.33700E+01     0.74800E+05 

-03 

1.500E+00 

4.400E+00 

1. OOOE+00 

2.300E+00 

1.260E+12 0.00 62620.0 

O.OOOOOE+OO 0.56640E+05 

5. OOOE+00 

7.500E+00 

1. OOOE+00 

3.200E+00 

8.200E-01 

1.520E+15       -0.41 0.0 

-0.13200E+01     0.73500E+03 

5.OOOE+00 

5. OOOE+00 

1. OOOE+00 

1.300E+00 

1.988E+12        -0.05 -721.0 

-0.25100E+01   -0.67600E+02 

N20 Enhanced by 5 OOOE+00 

H20 Enhanced by 8 300E+00 

N2 Enhanced by 1 OOOE+00 

C02 Enhanced by 1 500E+00 

5. N0+M=N+0+M 

N2 

H2 

H20 

C02 

N20 

Enhanced by 

Enhanced by 

Enhanced by 

Enhanced by 

Enhanced by 

1 

2 

6 

3 

2 

1 

OOOE+00 

200E+00 

700E+00 

OOOE+00 

200E+00 

400E+15 0 00 148430 0 

6. N2+M=N+N+M 3 710E+21 -1 60 225000 0 

7. N20+N=N2+N0 1 000E+13 0 00 19870 0 

8. N02+N=N20+0 5 010E+12 0 00 0 0 

9. N02+N=N0+N0 3 980E+12 0 00 0 0 

10. N02+N02 =N0+N0+02 1 630E+12 0 00 26120 0 

11. N02+N02=N0+N03 9 640E+09 0 73 20920 0 

12. N02+N03 =N0+N02+02 1 400E+11 0 00 3180 0 

13. HN0+N0=N20+0H 8 510E+12 0 00 29590 0 

14. HN0+02=H02+N0 1 000E+13 0 00 25000 0 

15. HN0+N02=H0N0+N0 6 OOOE+11 0 00 1987 0 
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16. H0N0+0=0H+N02 1.200E+13 0. .00 5961. 0 

17. H0N0+0H=H20+N02 1.270E+10 1. .00 135. .0 

18. HNO+0=OH+NO 3.610E+13 0. .00 0. 0 

19. NH+0=NO+H 5.500E+13 0. .00 0. 0 

20. NH+0=N+OH 3. 720E+13 0. .00 0. 0 

21. NH+NH=N2+H+H 5.100E+13 0. .00 0. 0 

22. NH+M=N+H+M 2.650E+14 0. .00 75510. 0 

23. NH2+N0=N20+H2 5.000E+13 0. .00 24640. 0 

24. CH+02=HC0+0 3.300E+13 0. .00 0. 0 

25. CH+0=CO+H 5. 700E+13 0. .00 0. 0 

26. CH+OH=HCO+H 3.000E+13 0. 00 0. 0 

27. CH+C02=SC0+C0 3.400E+12 0. 00 690. 0 

28. CH+H=C+H2 1.500E+14 0. .00 0. 0 

29. C+02=C0+0 2.000E+13 0. .00 0. 0 

30. C+OH=CO+H 5.000E+13 0. .00 0. 0 

31. 0H+HC0<=>H20+C0 5. 000E+13 0. .00 0. 0 

32. HCO+M<*=>H+CO+M 1.870E+17 -1. 00 17000. 0 

H2 Enhanced by 2. . OOOE+OO 

H20 Enhanced by 1. .200E+01 

CO Enhanced by 1. .500E+00 

C02 Enhanced by 2. .OOOE+OO 

33. H+HC0<~>H2+C0 7.340E+13 0. 00 0. 0 

34. KCO+0=C0+0H 3.000E+13 0. 00 0. 0 

35. HC0+0=*C02+H 3.000E+13 0. 00 0. 0 

36. HC0+02<=>H02+C0 7.600E+12 0. .00 400. 0 

37. CO+0 ( +M) =C02 ( +M) 1.800E+10 0. 00 2380. 0 

Low pressure limit: 0.13500E+25 -0.27900E+01     0.41900E+04 

T&H  VALUE     0.10000E+01 

CO Enhanced by 1. . 770E+00 

C02 Enhanced by 2. , 700E+00 

H20 Enhanced by 5. .OOOE+OO 

N20 Enhanced by 5. .OOOE+OO 

38. C0+0H=C02+H 1.510E+07 1. 30 -758. 0 

39. C0+02=C02+0 2.530E+12 0. 00 47688. 0 

40. H02+C0=C02+0H 5.800E+13 0. 00 22934 . 0 

41. H2+02*=20H 1. 700E+13 0. 00 47780. 0 

42. 0H+H2=H20+H 2.160E+08 1. 50 3430. 0 

43. 02+H=0+0H 3.520E+16 -0. 70 17070. 0 

44. 0+H2=0H+H 5.060E+04 2. .67 6290. 0 

45. H+02+M=H02+M 3.610E+17 -0. 72 0. 0 

H20 Enhanced by 1. . 860E+01 

C02 Enhanced by 4. .200E+00 

H2 Enhanced by 2. .900E+00 

CO Enhanced by 2. .100E+00 

N2 Enhanced by 1. .300E+00 

46. 0H+H02=H20+02 7.500E+12 0. 00 0. 0 
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47. H+H02=20H 1.690E+14 0.00 874.0 

48. 0+H02=02+0H 1.400E+13 0.00 1073.0 

49. 20H=0+H20 6.000E+08 1.30 0.0 

50. 2H+M=H2+M 1. 000E+18 -1.00 0.0 

H2 Enhanced by 0 OOOE+OO 

H20 Enhanced by 0 OOOE+00 

C02 Enhanced by 0 OOOE+OO 

51. 2H+H2=2H2 9.200E+16 -0.60 0.0 

52. 2K+H20=H2+H20 6.000E+19 -1.25 0.0 

53. 2H+C02=H2+C02 5.490E+20 -2.00 0.0 

54. H+0H+M=H20+M 1.600E+22 -2.00 0.0 

H20 Enhanced by 5 OOOE+OO 

55. H+0+M=OH+M 6.200E+16 -0.60 0.0 

H20 Enhanced by 5 OOOE+OO 

56. 0+0+M=02+M 1.890E+13 0.00 -1788.0 

57. H+H02=H2+02 6.630E+13 0.00 2126.0 

58. 2H02=H202+02 1.800E+12 0.00 0.0 

59. H202+M=20H+M 1.300E+17 0.00 45500.0 

60. H202+H=H02+H2 4.820E+13 0.00 7948.0 

61. H202+0H=H20+H02 1. 750E+12 0.00 318.0 

62. N0+H02=N02+0H 2.110E+12 0.00 -479.0 

63. N02+H=N0+0H 1.300E+14 0.00 361.0 

64. N02+0=N0+02 3.900E+12 0.00 -238.0 

65. NCO+H=NH+CO 5.400E+13 0.00 0.0 

66. NCO+0=NO+CO 4.520E+13 0.00 0.0 

67. NC0+N=N2+C0 2.000E+13 0.00 0.0 

68. NCO+OH=NO+CO+H 2.000E+13 0.00 7500.0 

69. NCO+M^N+CO+M 1.140E+23 -1.95 59930.0 

N20 Enhanced by 5. OOOE+OO 

H20 Enhanced by 5. OOOE+OO 

N2 Enhanced by 1. OOOE+OO 

C02 Enhanced by 1. 500E+00 

70. NC0+N0=N20+C0 8.800E+17 -1.78 790.0 

71. NC0+N0=C02+N2 1.130E+18 -1.78 790.0 

72. NC0+N02=C02+N20 1.950E+13 -0.26 -620.0 

73. NC0+N02=C0+N0+N0 1. 770E+12 -0.26 -620.0 

74. NH+02-HN0+0 4.610E+05 2.00 6500.0 

75. NH+02=N0+0H 1.280E+06 1.50 100.0 

76. NH+N0=N20+H 3.500E+14 -0.46 16.1 

77. NH+N0=N2+0H 2.160E+13 -0.23 0.0 

78. N20+H=N2+0H 

Declared duplicate reaction. . 

2.530E+10 0.00 4550.0 

79. N20+H=N2+0H 

Declared duplicate reaction.. 

2.230E+14 0.00 16750.0 

80. NNH+0=N20+H 1.400E+14 -0.40 477.0 

81. NNH+0=NO+NH 3.300E+14 -0.23 -1013.0 

24 



82. N20+0=N2+02 1.400E+12 0.00 10800.0 

83. N20+0=N0+N0 6.920E+13 0.00 26600.0 

84. H+KNO=NH+OH 3.000E+14 0.00 18000.0 

85. NH+0H=N+H20 5.000E+11 0.50 2000.0 

86. NH+N=N2+H 3.000E+13 0.00 0.0 

87. N+H2=NH+H 1.600E+14 0.00 25140.0 

88. HN0+H=NH2+0 3.500E+15 -0.30 28200.0 

89. NH2+0=NH+0B 6. 750E+12 0.00 0.0 

90. NH2+0H=NH+H20 4.000E+06 2.00 1000.0 

91. NH2+H=NH+H2 4.000E+13 0.00 3650.0 

92. NH2+NH=N2H2+H 1.500E+15 -0.50 0.0 

93. NH2+N=N2+H+H 7.200E+13 0.00 0.0 

94. NH2+02=HN0+0H 4.500E+12 0.00 25000.0 

95. NH2+NH2=N2H2+H2 5.000E+11 0.00 0.0 

96. NH2+NH2=NH+NH3 5.000E+13 0.00 10000.0 

97. NH2+M2=N2H3+H 1.790E+13 -0.35 11320.0 

98. NH2+NH2+M=N2H4 +M 2.980E+47 -9.44 9680.0 

99. tJH2+N02=N20+H20 2.840E+18 -2.20 0.0 

100. NH+N02=N20+0H 1.000E+13 0.00 0.0 

101. N2H4+H=N2H3+H2 l.OOOE+12 0.50 2000.0 

102. N2H4 +0H=N2H3+H2O 3.000E+10 0.68 1290.0 

103. N2H4+0=N2H3+0H 2.000E+13 0.00 1000.0 

104. N2H3=N2H2+H 1.200E+13 0.00 58000.0 

105. N2H3+H=N2H2+H2 l.OOOE+12 0.50 2000.0 

106. N2H3+0H=N2H2+H20 3.000E+10 0.68 1290.0 

107. N2H3+0=N2H2+0H 2.000E+13 0.00 1000.0 

108. N2H2+M=NNH+H+M 5.000E+16 0.00 50000.0 

H20 Enhanced by 1.500E+01 

02 Enhanced by 2.000E+00 

N2 Enhanced by 2.000E+00 

H2 Enhanced by 2.000E+00 

109. N2H2+H=miH+H2 5.000E+13 0.00 1000.0 

110. N2H2+0=NH2+N0 l.OOOE+13 0.00 0.0 

111. N2H2+0=NNH+0H 2.000E+13 0.00 1000.0 

112. N2H2+0H=NNH+H20 1.000E+13 0.00 1000.0 

113. N2H2+NH=NNH+NH2 1.000E+13 0.00 1000.0 

114. N2H2+NH2=NH3+NKH 1.000E+13 0.00 1000.0 

115. NH2+N0=N2+H+0H 9.300E+11 0.00 0.0 

116. NH2+N0=N2+H20 2.000E+20 -2.60 924.0 

117. NH3+0H=NH2+H20 2.040E+06 2.04 566.0 

118. NH3+H=NH2+H2 5.420E+05 2.40 9917.0 

119. NH3+0=NH2+0H 9.400E+06 1.94 6460.0 

120. NH3+M=NH2+H+M 2.200E+16 0.00 93470.0 

121. NNH+N0=N2+HN0 2.000E+13 0.00 0.0 

122. NNH+H=N2+H2 1.000E+14 0.00 0.0 

123. NNH+0H-N2+H20 5. 000E+13 0.00 0.0 
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124. NNH+NH2=N2+NH3 5. 000E+13 0.00 0.0 

125. NNH+NH=N2+NH2 5. 000E+13 0.00 0.0 

126. HN0+0H-N0+H20 1.295E+07 1.88 -958.0 

127. H+HN0=H2+N0 4.460E+11 0.72 655.0 

128. HN0+NH2=NH3+N0 2.000E+13 0.00 1000.0 

129. N+N0=N2+0 3.270E+12 0.30 0.0 

130. 0+N0=N+02 3.800E+09 1.00 41375.0 

131. N0+H=N+0H 1. 700E+14 0.00 48800.0 

132. HN0+HN0=N20+H20 3.630E-03 3.98 1190.0 

133. N20+N0=N2+N02 4.290E+13 0.00 47130.0 

134. N0+N0+N0=N20+N02 1.070E+10 0.00 26800.0 

135. HOCO+M=OH+CO+M 2.190E+23 -1.89 35270.0 

136. C0+N02=NO+C02 9.040E+13 0.00 33780.0 

137. CH+N02=HC0+N0 1.010E+14 0.00 0.0 

138. H2+N02=H0N0+H 3.210E+12 0.00 28810.0 

139. NKH=N2+H 

Declared duplicate reaction... 

3.000E+08 0.00 0.0 

140. NNH+M=N2+H+M 

Declared duplicate reaction... 

1.000E+13 0.50 3060.0 

141. HN0+N0+N0=HNN0+N02 1.700E+11 0.00 2100.0 

142. HNN0+N0=NNH+N02 3.200E+12 0.00 270.0 

143. HNN0+N0=N2+H0N0 2.600E+11 0.00 810.0 

144. HNN0+M=H+N20+M 2.200E+15 0.00 21600.0 

145. HNN0+M=N2+0H+M 1.000E+15 0.00 25600.0 

146. HCO+NO=HNO+CO 7.230E+12 0.00 0.0 

147. 0+CH20<=>0H+HC0 3.900E+13 0.00 3540.0 

148. 0+CH20H<=>0H+CH20 1.000E+13 0.00 0.0 

149. 0+CH30<=>0B+CH20 1.000E+13 0.00 0.0 

150. 0+CH30H<=>0H+CH20H 3.880E+05 2.50 3100.0 

151. 0+CH30H<=>0H+CH30 1.300E+05 2.50 5000.0 

152. 02+CH20<=>H02+HC0 1.000E+14 0.00 40000.0 

153. H+HCO ( +M) <=>CH20 ( +M) 1.090E+12 0.48 -260.0 

Low pressure limit. 0.13500E+25 -0.25700E+01     0.14250E+04 

TROE centering: 0.78240E+00 0.27100E+03     0.27550E+04     0. 65700E+04 

H2 Enhanced by- 2 OOOE+OO 

H20 Enhanced by- 6 OOOE+OO 

CO Enhanced by 1 500E+00 

C02 Enhanced by 2 OOOE+OO 

154. H+CH20 ( +M) <=>CH20H(+M) 5.400E+11 0.45 3600.0 

Low pressure limit. 0.12700E+33 -0. i8200E+01     0.65300E+04 

TROE centering: 0.71870E+00 0. W300E+03     0.12910E+04     0. 41600E+04 

H2 Enhanced by 2 OOOE+OO 

H20 Enhanced by 6 OOOE+OO 

CO Enhanced by . 1 500E+00 

C02 Enhanced by 2 OOOE+OO 

7 55. H+CH201+M) <=>CH30f ^ ■M) 5.400E+11 0.45 2600.0 
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156. 

157. 

158. 

159. 

Low pressure limit: 0.22000E+31  - 

TROE centering: 0.75800E+00 

H2 Enhanced by 

H20 Enhanced by 

CO Enhanced by 

C02 Enhanced by 

H+CH20<=*>HC0+H2 

H+CH20H(+M) <=>CH30H(+M) 

Low pressure limit: 0.30000E+32  - 

TROE centering: 0.76790E+00 

H2 Enhanced by 

H20 Enhanced by 

CO Enhanced by 

C02 Enhanced by 

H+CH20H<=>H2+CH20 

K+CH30(+M) <=>CH30H(+M) 

Low pressure limit: 0.86000E+29  - 

TROE centering: 

160. 

161. 

162. 

163. 

164. 

165. 

166. 

167. 

168. 

169. 

170. 

171. 

172. 

173. 

174. 

175. 

176. 

177. 

H2 

H20 

CO 

C02 

H+CH30<=>H+CH20H 

H+CH30<=>H2+CH20 

H+CH30H<=>CH20H+H2 

H+CH30H<=>CH30+H2 

H2+C0( +M) <=>CH20 ( +M) 

Low pressure limit: 

TROE centering: 

H2 

H20 

CO 

C02 

0H+CH20<=>HC0+H20 

0H+CH20H<=>H20+CH20 

0H+CH30<=>H20+CH20 

0H+CH30H<=>CH20H+H20 

0H+CH30H<=>CH30+H20 

H02+CH20<=>HC0+H202 

CH+H20<=>H+CH20 

CH20H+02<=>H02+CK20 

CH30+02<=>H02+CH20 

HC0+HN0=CH20+N0 

CH20+N02=HC0+H0N0 

HC0+N02=C0+H0tJ0 

HC0+N02=H+C02+N0 

0.89020E+00 

Enhanced by 

Enhanced by 

Enhanced by 

Enhanced by 

0.48000E+01 

0.94000E+02 

2.000E+00 

6.000E+00 

1.500E+00 

2.000E+00 

2. 

1. 

0.48000E+01 

0.33800E+03 

2.000E+00 
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